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Exercice 1. On considere l’application

f : x ∈ R⩾−2 7→ x3 − x ∈ R.
1. Que vaut f∗([−2,+∞[) ? Que vaut f∗([0,+∞[) ?
2. Que vaut f (−1)([0,+∞[) ? Que vaut f (−1)([−2,+∞[) ?
3. Cette application est elle injective ?
4. Cette application est elle surjective ?
5. Comment modifier l’espace d’arrivee pour la rendre surjective ?
6. Trouver x0 le plus petit possible pour cette application, avec l’espace de depart

R⩾x0 soit injective.

Solution. Tout d’abord quelques rappels d’analyse réelle :
— Si une fonction dérivable admet une dérivée positive (resp. strictement positive)

sur un intervalle de R = R ∪ {±∞} alors cette fonction est croissante (resp.
strictement croissante) sur cet intervalle.

— Si une fonction dérivable admet une dérivée négative (resp. strictement négative)
sur un intervalle de R alors cette fonction est décroissante (resp. strictement
décroissante) sur cet intervalle.

— Les extrema d’une fonction définie et dérivable sur intervalle de R sont les
images des points du bords de cet intervalle ou des points stationnaires (de
dérivée nulle).

— Soit a, b ∈ R et f définie et continue sur I un intervalle de R alors pour tout
y ∈]m,M [ ou m = inf{f(x) : x ∈ I} et M = sup{f(x) : x ∈ I} il existe
x ∈ [a, b] tel que f(x) = y.

— Une fonction strictement croissante est injective.
1) Démontrons que f([−2,+∞[) = [−6,+∞[. On procèdera par double inclusion.
On s’appuiera sur le tableau de variation de f :
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Étant donné que −6 est inférieur à 1−
√
3

3
on a bien f([−2,+∞[) ⊂ [−6,+∞[.

D’autre part, f est continue avec :

−6 = inf{f(x) : x ∈ [−2,+∞[} et +∞ = sup{f(x) : x ∈ [−2,+∞[}.

Donc pour tout y ∈ [−6,+∞[, il existe x ∈ [−2,+∞[ tel que f(x) = y. C’est à dire
[−6,+∞[⊂ f([−2,+∞[).
On conclut que f([−2,+∞[) = [−6,+∞[.

Un raisonnement similaire donne f([0,+∞[) = [1−
√
3

3
,+∞[.

2) À l’aide du tableau de variation on observe que f−1([0,+∞[) = [−1, 0] ∪ [1,+∞[.
Pour f−1([−2,+∞[), le tableau de variation nous indique qu’il existe α ∈] − 2,−1[
tel que f(α) = −2. En particulier, comme la fonction est strictement croissante sur
cet interval, c’est l’unique preimage de −2 sur cet intervale. Ainsi, f−1([−2,+∞[) =
[α,+∞[.

Remarque : La polynôme x3 − x + 2 n’admet pas de racine évidente, par conséquent
trouver la valeur exact de α (qui n’est pas rationel) requiert des méthodes de calcul
que vous n’êtes pas sensé connaitre à priori.

3) On rappelle qu’une application g : A→ B est injective si et seulement si :

∀x, y ∈ A : (x ̸= y) ⇒ (g(x) ̸= g(y)).

Or ici −1 et 0 on la même image donc f n’est pas injective.

4) On rappelle qu’une application g : A→ B est surjective si et seulement si :

∀y ∈ B∃x ∈ A : g(x) = y.

Or ici on sait que f([−2,+∞[) = [−6,+∞[. en particulier −7 /∈ f([−2,+∞[) mais
−7 ∈ R donc f : [−2,+∞[→ R n’est pas surjective.

5) Une application est évidement surjective dans son image par définition de l’image,
il suffit donc de restreindre R à l’image de f . Ainsi, la fonction h : [−2,+∞[→
f([−2,+∞[) définit pour tout x ∈ [−2,+∞[ par h(x) = f(x) est surjective.

6) On sait que sur [−
√
3
3
,+∞[ l’application f est strictement croissante donc injective.

Ainsi on peut déduis que x0 ⩽
√
3
3

. Maintenant, on doit prouver que
√
3
3

est effective-
ment la plus petite valeur possible. On procède par l’absurde.



Supposons que x0 <
√
3
3

ainsi f est injective sur [x0,+∞[. On peut supposer que
x0 > 0. Notons m =

√
3
3

pour plus de simplicité. La fonction f admet les deux pro-
priétés suivante :

— Sur l’intervalle [x0,m] f est strictement décroissante.
— Sur l’intervalle [m, 1] f est strictement croissante.

Par le théorème des valeurs intermédiaires :
— la fonction g : [x0,m] → R, définie comme la restriction de f à [x0,m] atteint

toute valeurs de [f(m), f(x0)],

— la fonction h : [m, 1] → R, définie comme la la restriction de f à [m, 1] atteint
toute valeurs de [f(m), 0].

Observons que si l’on pose y = f(x0)
2

alors y ∈]f(m), 0[∩]f(m), f(x0)[, on a donc
l’existence de :

— un point xg ∈]x0,m[ tel que y = g(xg) = f(xg),
— un point xh ∈]m, 1[ tel que y = g(xh) = f(xh).

Ainsi f(xg) = f(xh) = y avec xg ̸= xh et xg, xh ∈ [x0,+ inf[ ce qui contredit l’injecti-
vité de f sur [x0,+ inf[. Donc x0 = m.

Exercice 2. Soient X, Y, Z des ensembles (pas forcement finis) et f : X → Y et
g : Y → Z deux applications entre les ensembles X et Y et les ensembles Y et Z et
g ◦ f : X → Z l’application composee.

On verra la semaine prochaine que si f et g sont injectives (resp. surjectives, ) alors
g ◦ f est injective (resp. surjective) 1.

On va examiner des reciproques de ces faits.
1. Montrer que si g ◦ f est surjective alors g est surjective. Donner un exemple

montrant que f n’est pas forcement surjective.
2. Montrer que si g ◦ f est injective alors f est injective. Donner un exemple

montrant que ψ n’est pas forcement injective.

Solution.

1. Soit z ∈ Z un élément arbitraire. On montre qu’il existe un élément y ∈ Y tel
que f(y) = z.
Comme g ◦ f est surjective, il existe un élément x ∈ X tel que g ◦ f(x) = z.
Ainsi, si on prend l’élément y := f(x), alors g(y) = g(f(x)) = g ◦ f(x) = z.
Comme z est arbitraire, on conclut que g est surjective.

1. En particulier si f et g sont bijective alors g ◦ f est bijective.



Comme contre-exemple, on peut considerer les ensembles X = Y = {a, b, c} et
Z = {a, b} et definir les fonctions suivantes :

X Y Z

a a a

b b b

c c

f g

2. Soient x, x′ ∈ X deux éléments arbitraires. Nous avons

f(x) = f(x′)

=⇒ g(f(x)) = g(f(x′))

⇐⇒ g ◦ f(x) = g ◦ f(x′)
⇐⇒ x = x′ par injectivité de g ◦ f.

Par conséquent f est injective.

Comme contre-exemple, on peut prendre les ensembles X = Z = {a, b} et
Y = {a, b, c} et définir les fonctions suivantes.

X Y Z

a a a

b b b

c

f g

Exercice 3. Soit f : X 7→ Y une application entre ensembles. Pour A ⊂ X un
sous-ensemble, on notera pour simplifier l’image de A par X par f(A) ⊂ Y (au lieu
de f∗(A)).

1. Que vaut f(∅) ?
2. Montrer que pour tout sous-ensembles A,B ⊂ X

f(A ∪B) = f(A) ∪ f(B).



3. (a) Montrer que pour tout A,B ⊂ X des sous-ensembles, on a

f(A ∩B) ⊂ f(A) ∩ f(B);

(b) Donner un exemple pour lequel f(A ∩B) ̸= f(A) ∩ f(B).
(c) Montrer que si f est injective on a

f(A ∩B) = f(A) ∩ f(B).

4. Montrer que pour tout sous-ensembles C,D ⊂ Y , on a

f (−1)(C ∪D) = f (−1)(C) ∪ f (−1)(D).

5. Montrer que pour tout pour tout sous-ensembles C,D ⊂ Y , on a

f (−1)(C ∩D) = f (−1)(C) ∩ f (−1)(D).

6. Montrer que

f est injective ⇐⇒ ∀A ⊂ X, f (−1)(f(A)) = A.

7. Montrer que

f est surjective ⇐⇒ ∀C ⊂ Y, f(f (−1)(C)) = C.

Solution.

1. Par définition,
f(∅) := {f(x) | x ∈ ∅} = ∅.

2. Nous avons la série d’équivalences suivantes :

y ∈ f(A ∪B) ⇐⇒ ∃x ∈ A ∪B tel que f(x) = y

⇐⇒ ∃x ∈ A ou x ∈ B tel que f(x) = y

⇐⇒ f(x) ∈ f(A) ou f(x) ∈ f(B) et f(x) = y

⇐⇒ y ∈ f(A) ou y ∈ f(B)

⇐⇒ y ∈ f(A) ∪ f(B).

3. (a) Comme A ∩ B ⊂ A, f(A ∩ B) ⊂ f(A). De même on a f(A ∩ B) ⊂ f(B).
Ainsi f(A ∩B) ⊂ f(A) ∩ f(B).



(b) Par exemple, prenons la fonction constante c : R → R qui envoie tout
élément x ∈ R vers 1. Considérons les ensembles

A = {x ∈ R | x > 0} et B = {x ∈ R | x < 0}.

Alors,

c(A ∩B) = c(∅) = ∅ et c(A) ∩ c(B) = {1} ∩ {1} = {1}.

(c) On procède par double inclusion. Par la question 3.(a), nous avons déjà
l’inclusion ⊂. Montrons l’autre inclusion. Soit y ∈ f(A) ∩ f(B). Alors il
existe un x ∈ A tel que f(x) = y et il existe un x′ ∈ B tel que f(x′) = y.
Ainsi f(x) = y = f(x′). Mais par injectivité de f , x = x′. Ainsi x = x′ ∈
A ∩B et on conclut que y = f(x) ∈ f(A ∩B).

4. Remarque général : Attention au fait que f−1 ne désigne pas une application
inverse (qui n’existe pas en général), c’est seulement une notation pour l’image
réciproque (notée f ∗ dans le cours).
Pour tout x ∈ X, on a

x ∈ f−1(C ∪D) ⇐⇒ f(x) ∈ C ∪D
⇐⇒ f(x) ∈ C ou f(x) ∈ D

⇐⇒ x ∈ f−1(C) ou x ∈ f−1(D)

⇐⇒ x ∈ f−1(C) ∪ f−1(D).

5. " =⇒ "
Fixons A ⊂ X. Commencons à montrer la deuxième inclusion
(i.e f (−1)(f(A)) ⊇ A). Soit a ∈ A, f(a) ∈ f(A), donc a ∈ f (−1)(f(A)).

Montrons maintenant la premiére inclusion. Soit s ∈ f (−1)(f(A)) et notons
y := f(s) ∈ f(A) (Attention, le fait que f(s) ∈ f(A) ne nous permet pas de
conclure l’appartenance de s à A). Comme y ∈ f(A), il existe un t ∈ A tel que
f(t) = y. Ce qui veut dire que

f(t) = y = f(s).

La fonction f est injective, alors s = t. Puisque l’élément t est dans A,
s appartient aussi à A.

"⇐="
Fixons x0, x1 ∈ X dans X tel que f(x0) = f(x1). Nous notons p := f(x0)
(resp. p := f(x1)). Nous avons alors que f({x0}) = {p} et de même pour
f({x1}) = {p}. Alors :

{x0} = f (−1)(f({x0})) = f (−1)({p}) = f (−1)(f({x1})) = {x1}



Nous avons montrer que {x0} = {x1} et ceci qui implique que x0 et x1 sont
égaux.

Par le choix abstrait de x0 et x1, nous pouvons conclure que f est injective.
6. " =⇒ "

Soit C ⊂ Y . Montrons d’abord la première inclusion (i.e f(f−1(C)) ⊆ C).
Supposons que f−1(C) ̸= ∅, sinon l’inclusion est trivial. Soit t ∈ f(f−1(C)),
∃t0 ∈ f−1(C) t.q f(t0) = t. Comme t0 ∈ f−1(C) implique que f(t0) ∈ C donc
t = f(t0) ∈ C

Attaquons maintenant à la deuxième inclusion. Soit c ∈ C. Comme f est sur-
jective, il existe un b ∈ X tel que f(b) = c.
Nous avons que f(b) ∈ C. Ceux-ci revient à dire que b ∈ f (−1)(C) et donc
f(b) ∈ f(f (−1)(C)). Puisque c = f(b), alors c appartient à f(f (−1)(C)).
Par le choix arbitraire de c, nous avons montré la deuxième inclusion.

"⇐="
Prenons y ∈ Y . Nous savons que f(f (−1)({y})) = {y}. Puisque que l’ensemble
{y} est non vide, alors f (−1)({y}) ne l’est aussi (car f(∅) = ∅). Ce qui veut
dire que f (−1)({y}) admet au moins un élément. On conclut alors que f est
surjective.

Exercice 4. ("Cantor, encore !") Construire une application bijective

C3 : N3 ≃ N

qui est "polynomiale", c’est a dire qu’il existe une fonction polynomiale en trois
variables a coefficients rationels,

P (X, Y, Z) =
∑∑
i,j,k⩾0

ai,j,kX
iY jZk

(avec ai,j,k des nombres rationels) telle que

∀(l,m, n) ∈ N3, C3((l,m, n)) = P (l,m, n).

Pour ce faire on pourra utiliser le fait que l’on connait (Feuille 1) une application
polynomiale bijective

C2 : N2 ≃ N

et le fait (associativite du produit cartesien, admis) que

N3 = N2 × N.

Solution.



Remarque. Pour simplifier la notation, au lieu d’écrire "
∑n

i=0

∑m
j=0" nous l’écrivons

"
∑

i,j∈I" avec I ⊂ N un ensemble fini d’indices. En général, on devrait plutôt noter
"
∑

(i,j)∈I" avec I = {(i, j) ∈ N2 | 0 ⩽ i ⩽ n et 0 ⩽ j ⩽ m}. Mais comme
nous travaillons sur des polynomes, le nombre de coefficients valant zéro est infini
(denombrable). Alors pour un ensemble adequat d’indices, "

∑
i,j∈I" fait sences.

Nous definissons :

C3 : N3 → N
(k, n,m) 7→ C2(k, C2(n,m)).

Commençons à montrer que C3 est bijective.

1. Injectivité : Soit k, k̂, n, n̂,m, m̂ ∈ N tel que

C3(k, n,m) = C3(k̂, n̂, m̂).

Donc :

C3(k, n,m) = C3(k̂, n̂, m̂)

C2(k, C2(n,m)) = C2(k̂, C2(n̂, m̂))

Comme C2 est injective, cela implique que (k, C2(n,m)) = (k̂, C2(n̂, m̂)). Ainsi
k = k̂, C2(n,m) = C2(n̂, m̂) et denouveau par l’injectivité de C2, nous avons
(n,m) = (n̂, m̂) (i.e n =ˆ̂n et m = m̂).
C3 est bel et bien injective.

2. Surjectivité Soit l ∈ N, C2 est surjective alors il existe k, t ∈ N ;

C2(k, t) = l.

Denouveau par la surjectivité de C2, nous avons alors qu’il existe n,m ∈ N tel
que

C2(n,m) = t.

Ainsi nous avons :

C3(k, n,m) = C2(k, C2(n,m)) = C2(k, t) = l

et ceux-ci conclut la surjectivité de C3.

Il nous reste encore à montrer que C3 est polynomiale. Comme c’est le cas pour
C2, il existe P2(X, Y ) =

∑
i,j∈I wijX

iY j, où wi,j ∈ Q, ∀i, j ∈ I t.q

∀(m,n) ∈ N2, C2(m,n) = P2(m,n). (⋆⋆)



où I ⊂ N est l’ensemble fini d’indices.

A l’aide de la distribution usuel, nous allons montrer par récurence que (P2(X, Y ))d

est un polynomial pour n’importe quel d ∈ N (le cas d = 0, 1 est trivial.)

d = 2 : Nous montrons que P2(X, Y )2 est une fonction polynomiale.

(P2(X, Y ))2 = P2(X, Y )P2(X, Y )

=

( ∑
i1,j1∈I

wi1j1X
i1Y j1

)( ∑
i2,j2∈I

wi2j2X
i2Y j2

)
=
∑

i1,j1∈I

∑
i2,j2∈I

wi1j1wi2j2X
i1+i2Y j1+j2

=
∑
s,t∈I2

 ∑
i1+i2=s
j1+j2=t

wi1j1wi2j2


︸ ︷︷ ︸

=:w(2),st∈Q

XsY t

=
∑
s,t∈I2

w(2),stX
sY t

où I2 ⊂ N designe l’ensemble fini d’indices.

Remarque. Le terme "
∑

i1+i2=s
j1+j2=t

wi1j1wi2j2" signifie simplement qu’on somme

les (wi1j1wi2j2) pour lesquel i1 + i2 = s et j1 + j2 = t.

d > 2 : Par notre hypothèse d’induction, nous designons P d−1
2 (X, Y ) =

∑
i,j∈R w(d),ijX

iY j

où Id l’ensemble finit d’indice de P d−1
2 .Le raisonement est similaire que le cas

d = 2 :



(P2(X, Y ))d = P2(X, Y )P2(X, Y )d−1

=

( ∑
i1,j1∈I

wi1j1X
i1Y j1

) ∑
i2,j2∈Id−1

w(d−1)i2j2X
i2Y j2


=
∑

i1,j1∈I

∑
i2,j2∈Id−1

wi1j1w(d−1),i2j2X
i1+i2Y j1+j2

=
∑
s,t∈Id

 ∑
i1+i2=s
j1+j2=t

wi1j1w(d−1),i2j2


︸ ︷︷ ︸

=:w(d),st∈Q

XsY t

=
∑
s,t∈Id

w(d),stX
sY t

Où Id ⊂ N designe l’ensemble fini d’indices. Ainsi nous avons montré que
P2(X, Y )d est une fonction polynomale.

Nous savons, par le (⋆⋆), que

∀(l,m, n) ∈ N3, C3(l,m, n) = P2(l, P2(m,n)).

En definissant P3(X, Y, Z) := P2(X,P2(Y, Z)), il nous reste à montrer que
P3(X, Y, Z) est une fonction polynomiale.

P3(X, Y, Z) = P2(X,P2(Y, Z))

=
∑
i,j∈I

wijX
iP2(Y, Z)

j

=
∑
i,j∈I

wijX
i
∑
s,t∈Ij

w(j),stY
sZt

=
∑
i,j∈I

∑
s,t∈Ij

wijw(j),stX
iY sZt

=
∑
i∈I

∑
s,t∈Ij

(∑
j∈I

wijw(j),st

)
︸ ︷︷ ︸

=:aist∈Q

X iY sZt

=
∑
i∈I

∑
s,t∈Ij

aistX
iY sZt

Donc P3 est bien une fonction polynomale est ceci clôt cet exercice.



Exercice 5. Pour x un nombre rationel on note ⌊x⌋ la fonction "plancher" de x, ie.
le plus grand entier inferieur ou equal a x.

Montrer que l’application

(m,n) ∈ N2 7→ m+ (n+ ⌊(m+ 1)/2⌋)2 ∈ N

et une bijection entre N2 et N.

Solution. Nous allons montré que cette application est injective et surjective.

1. Surjectivité :
Soit y ∈ N. Nous definition x := max{t ∈ N | t2 ⩽ y}. Dans ce cas là, l’élément
y appartient à l’intervale [x2, (x+ 1)2[ , i.e :

x2 ⩽ y < (x+ 1)2.

Cherchons maintenant les candidats n,m ∈ N adéquats.

En prenant m ∈ N tel que x2+m = y, nous avons que cet élément ne peut être
plus grand que 2x, dû à l’inegalité au-dessus. I.e

x2 +m < x2 + 2x+ 1 = (x+ 1)2 =⇒ m < 2x+ 1 =⇒ m ⩽ 2x.

Puisque m ⩽ 2x, alors m+1
2

⩽ 2x+1
2

= x + 1
2
. l’élément x est un entier, donc

⌊x+ 1
2
⌋ n’est rien d’autre que x. Ce que veut dire que

⌊(m+ 1)/2⌋ ⩽ ⌊x+ 1/2⌋ = x

et celà implique
0 ⩽ x− ⌊(m+ 1)/2⌋

Puisque x−⌊(m+1)/2⌋ est plus grand ou égal à zéro alors n := x−⌊(m+1)/2⌋
appartient bien à N. Ainsi nous avons :

y = m+ x2 = m+ (n+ ⌊(m+ 1)/2⌋)2.

Ce qui conclut la surjectivité.

2. Injectivité :
Soit n, ñ,m, m̃ dans N tel que

m+ (n+ ⌊(m+ 1)/2⌋)2 = m̃+ (ñ+ ⌊(m̃+ 1)/2⌋)2

Denotons x := n+ ⌊(m+ 1)/2⌋ et x̃ := ñ+ ⌊(m̃+ 1)/2⌋.



Sans perdre de généralité, m ⩾ m̃.

m+ (n+ ⌊(m+ 1)/2⌋)2 = m̃+ (ñ+ ⌊(m̃+ 1)/2⌋)2

m+ x2 = m̃+ x̃2

m− m̃+ x2 = x̃2 (⋆)

Puisque m ⩽ 2⌊(m + 1)/2⌋ (si m est impair, ⌊(m + 1)/2⌋ = (m + 1)/2 et si
m est pair, ⌊(m + 1)/2⌋ = (m + 1)/2 − 1/2), nous avons que m ⩽ 2x. Ce qui
implique que 0 ⩽ m− m̃ ⩽ m ⩽ 2x et donc

x2 ⩽ x+m− m̃ = x̃ ⩽ x2 + 2x < x2 + 2x+ 1 = (x+ 1)2

et cela peut être résumé ainsi :

x2 ⩽ x̃2 < (x+ 1)2.

Comme x, x̃ ∈ N et que x̃2 ∈ [x2, (x + 1)2[ , la valeur de x̃2 n’a pas le choix
d’être égal à celui de x2.

Ainsi x2 = x̃2 implique (dû à (⋆)) que m = m̃. Comme x, x̃ ∈ N, nous avons
que x = x̃ et donc n = ñ.

Ce qui conclut l’injectivité


